
Cost-Benefit Analysis (CBA) as a tool to promote the development of more sustainable and resilient cities

eac ade mia

IREAS

I€)P

• .

About me

Environmental economist; researcher, analyst, project manager and university teacher

Field(s) of interest:

- Green and blue infrastructure
- Adaptation to climate change (floods and drought)
- Concept of ecosystem services
- Water management and disproportionate costs

Methods

- Cost-benefit analysis
- Valuation methods: e.g. Choice experiments
- Multi-criterial analysis
- Development of games

Platforma pro zelenou a modrou infrastrukturu

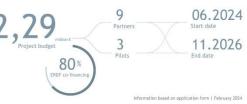
Sponge Boost

Upscaling the natural sponge functions of freshwater ecosystems to deliver multi-benefit green deal solutions

Funded by the European Union

Cand4Climate

LAND4CLIMATE partners



Making better use of data to counter climate change

fuge quantities of environmental and meteorological data are already available both within public institutions and from open sources. But how to make sense of all the data to improve public responses to heatwaves, droughts, floods and educe their impact on biodiversity? The Climate_CRICES project enhances the rapacity of public authorities to manage climate change effects projected by the fata. A dashboard visualises available data and will be further tested and rolled out to policy makers. In addition, a joint strategy developed by the project helps hem to better use those data.

Restoring urban streams to improve the micro climate in cities

Ecological restoration could help overheated cities with improving micro-climatic conditions and halting the decline of biodiversity. However, restoring green and blue nature corridors still lacks widespread acceptance among urban planners. The ReBioClim project addresses the many barriers and challenges for their nature-based solutions and strengthen the provision of sustainable biodiversity and ecosystem services. The partners focus on the re-establishment of urban streams. They analyse concrete challenges in four central European pilot areas, create and implement restoration plans, and produce a good-practice guide.

nterreg-central.eu/projects/rebioclim

Sponge Boost

Upscaling the natural sponge functions of freshwater ecosystems to delive multi-benefit green deal solutions

Funded by the European Union

LAND4CLIMATE partners

J technische universität Kettette universität dortmund

Interreg Co-funded by CZECHIA GERMANY NETHERLANDS POLAND SLOVAKIA

06.2024 12 2,51 Start date Partners 10 01.2027

Information based on application form | February 2024

06.2024

11.2026

Start date

9

3

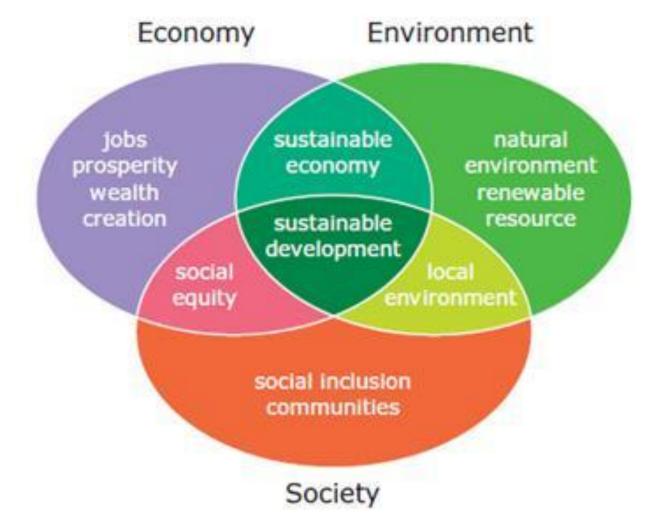
Partners

2,29

80%

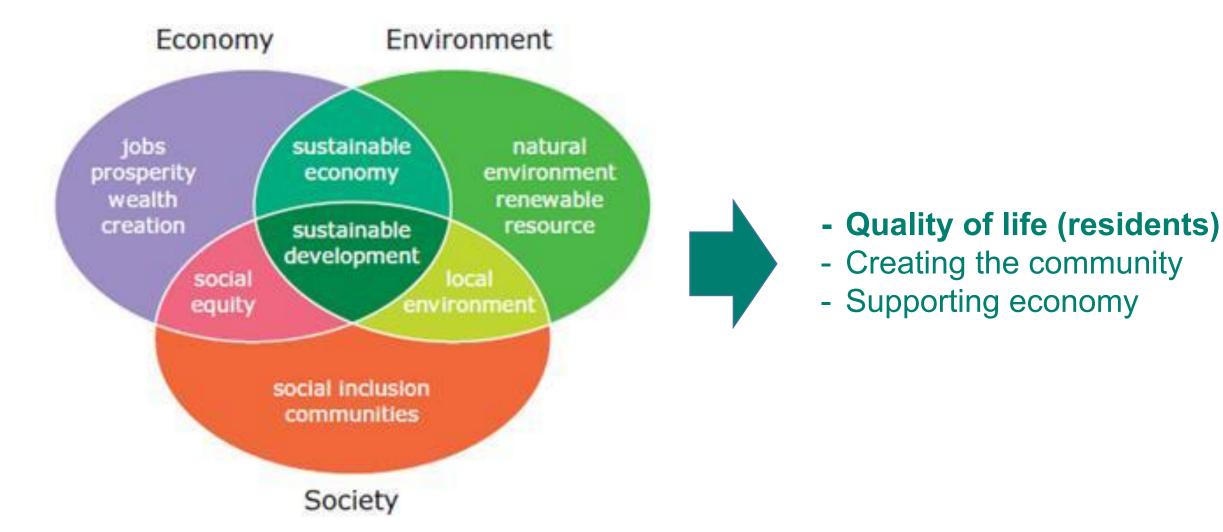
VODA VE MĚSTĚ Metodika pro hospodaření s dešťovou vodou

> imate in cities the micro

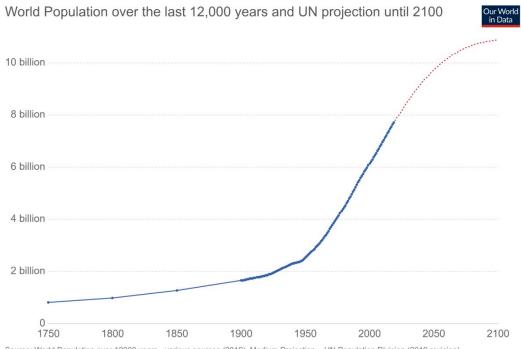

Cities and Sustainable Population

Consumption

Cities and Sustainable Population


Consumption

• Source: http://www.cei-bois.org/en/roadmap-2010/wood-in-sustainable-development


Cities and Sustainable Population

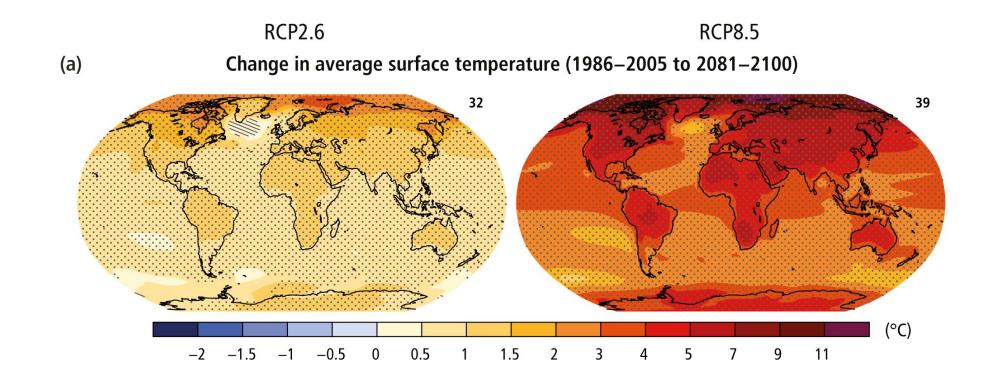
Consumption

• Source: http://www.cei-bois.org/en/roadmap-2010/wood-in-sustainable-development

Current and future challenges for cities

Source: World Population over 12000 years - various sources (2019), Medium Projection – UN Population Division (2019 revision) OurWorldInData.org/world-population-growth/ • CC BY

Increase of the population

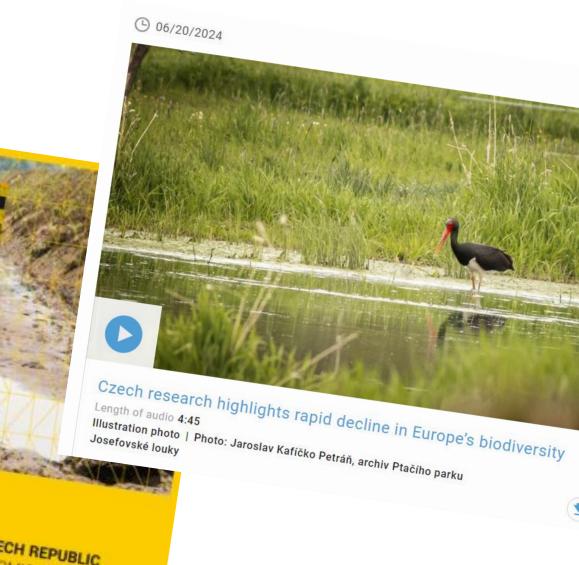

+

Urbanisation

=

Increase of population living in cities (urban growth)

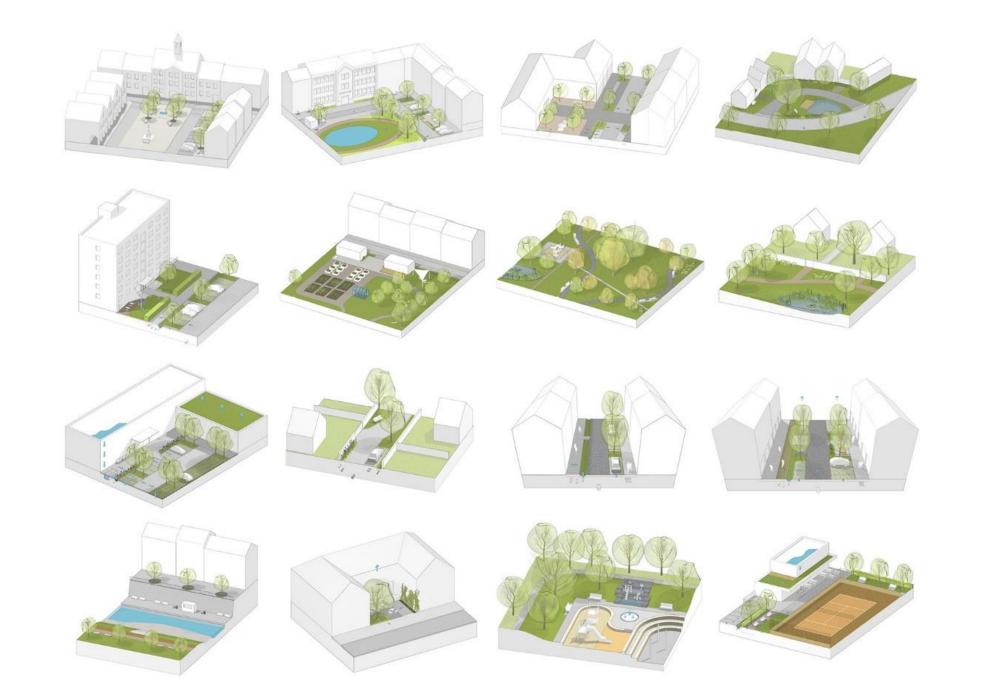
Current and future challenges for cities



Source: IPCC, 2014

DROUGHT IN THE CZECH REPUBLIC THE POLITICAL, ECONOMIC AND SOCIAL CONSEQUENCES

Sources: CNN (2024), Centre for Eastern Studies (2021), radio.cz (2024)



Current and future challenges for cities

SUSTAINABLE G ALS

Positive change:

- Society-wide awareness of the elements is increasing
- Interest in obtaining multiple types of benefits simultaneously
- Knowledge and experience of designers and implementers is increasing
- Financial availability (there are a number of subsidy titles)

Some problems persist:

- Often implemented only on a limited scale
- Benefits are not included in decision making

Status quo = loss of many opportunities

- 1. CITY an opportunity for a living centre
- 2. STREETS an opportunity to take greenery as a neighbour
- 3. PARKING an opportunity to end the asphalt desert
- 4. NEIGHBOURHOOD an opportunity for better living
- 5. PARK an opportunity to have your favourite place
- 6. BUILDINGS an opportunity to place greenery even in the built-up area
- 7. COURTYARD of the house an opportunity for a garden instead of weeds or asphalt
- 8. WATERCOURSES AND AREAS an opportunity to revive them

ECOSYSTEM SERVICES

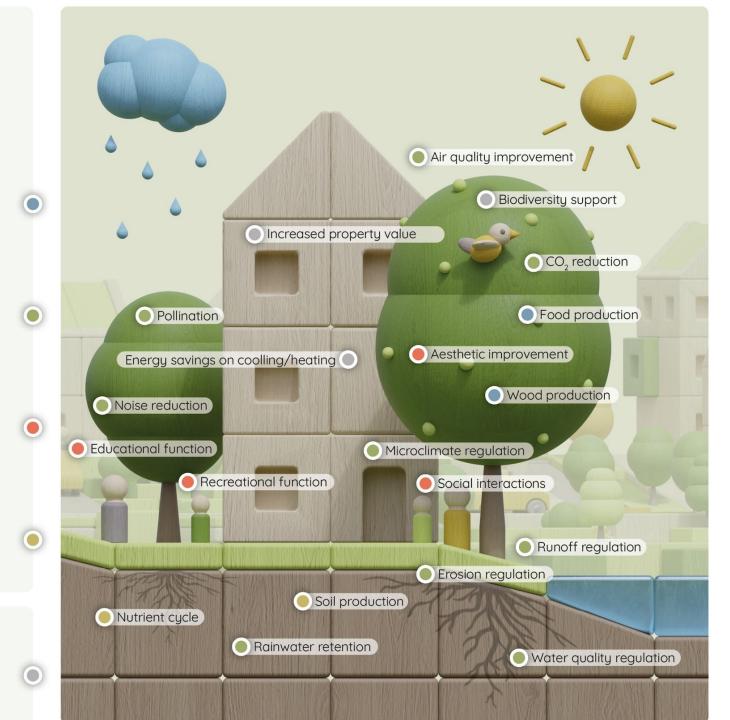
1. Provisioning

Thanks to blue-green infrastructure, we have the opportunity to utilize resources such as wood, biomass, and fruit.

2. Regulating

The existence of blue-green infrastructure regulates aspects such as noise pollution, air quality, and water flow.

3. Cultural


The presence of blue-green infrastructure provides opportunities for activities like recreation, aesthetic experiences, and socialization.

4. Supporting

Blue-green infrastructure has a long-term impact, for example, on soil formation, nutrient cycling, and water regulation in nature.

OTHER BENEFITS

Beyond ecosystem services, additional benefits include an increase in biodiversity and property values.

- Some problems persist:
 - Often implemented only on a limited scale
 - Benefits are not included in decision making

□ LACK OF COMPREHENSIBLE ARGUMENTS

- Some problems persist:
 - Often implemented only on a limited scale
 - Benefits are not included in decision making

□ LACK OF COMPREHENSIBLE ARGUMENTS

And to be able to respond to:

- "Why do we have to spend so much money on....?"
- "I want a measure that is visible!"
- "I understand that, but how do we explain it to the voters?"

•••••

- Some problems persist:
 - Often implemented only on a limited scale
 - Benefits are not included in decision making

 LACK OF COMPREHENSIBLE ARGUMENTS

And to be able to respond to:

- "Why do we have to spend so much money on....?"
- "I want a measure that is visible!"
- "I understand that, but how do we explain it to the voters?"

• • • • • •

"Much of the sustainable rainwater management measures that make sense are often invisible things. Or things that are hard to explain or present to people. There isn't some nice easy-to-understand material for that." How to get an economic argument?

Economic assessment

IOP

Methodology for Economic Assessment of Green and Blue Infrastructure in Human Settlements

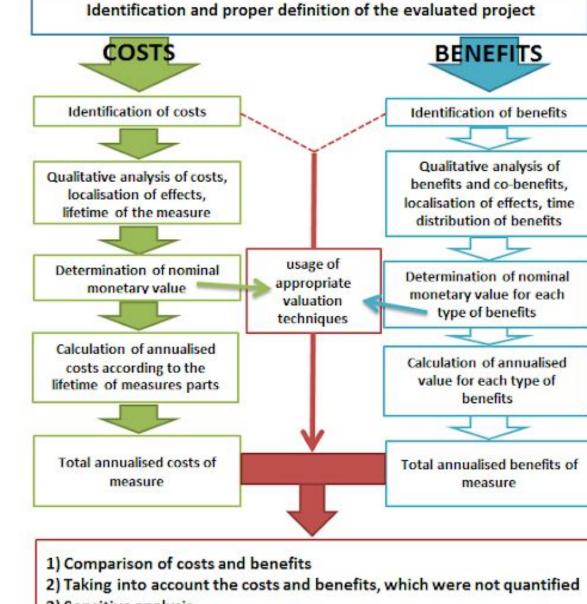
- monetary valuation of specific benefits (and costs)
- comparison of discounted benefits and costs of measures
- financial and socio-economic feasibility

Jan Macháč Lenka Dubová Jiří Louda Marek Hekrie Jan Brabec

Institute for Economic and Environmental Policy | Usti nad Labern, 2019

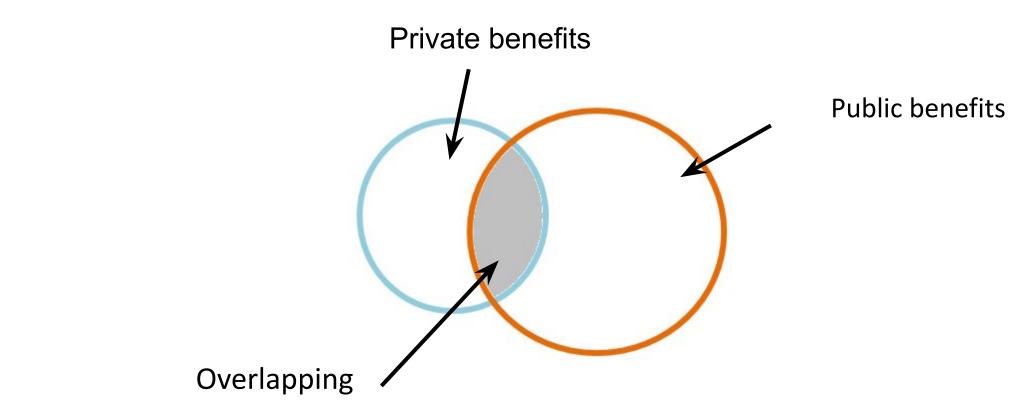
the Descende reassessed Policy

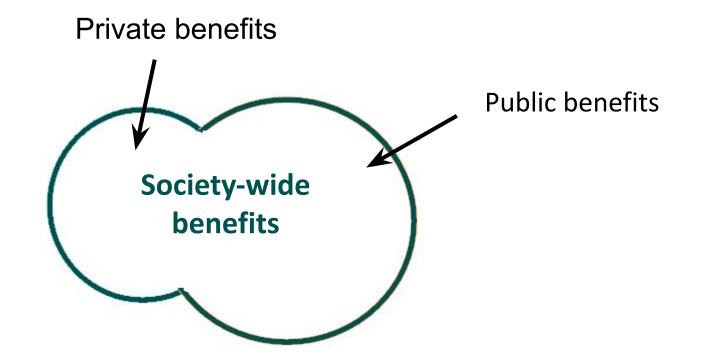
Economic assessment



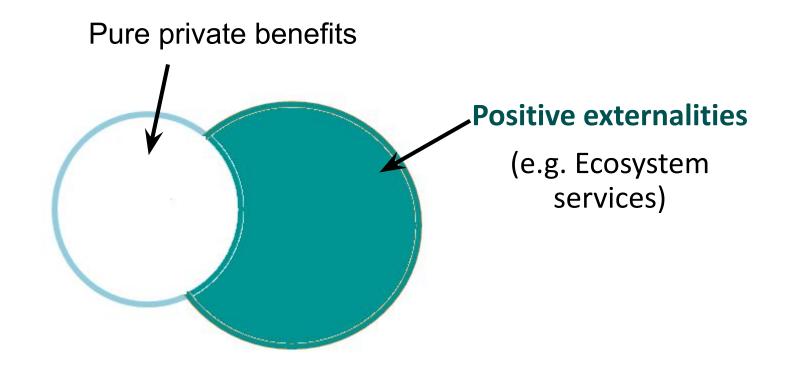
Jan Macháč Lenka Dubová Jiří Louda Marek Hekrle Lenka Zaňková Jan Brabec

Institute for Economic and Environmental Policy | Usli nad Labern, 2019



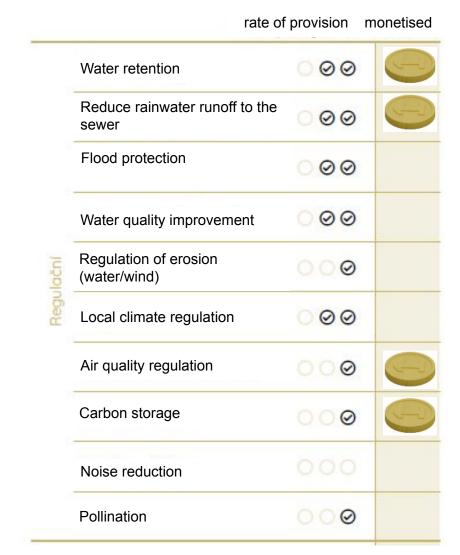

3) Sensitive analysis

4) Determination of results and conclusions


Provided Benefits and Ecosystem services

Provided Benefits and Ecosystem services

Provided Benefits and Ecosystem services


From an economic point of view, did it make sense to build a rain garden, green roof or to green the tramway?

Rain garden at the crossroads (Roudnice nad Labem)

- an area of 75 m²
- part of the overall revitalisation of the street
- water collection from the road
- ssupported by gravel base, perennials and shrubs

Services and benefits provided

Zásobovaci	Crop and food production	000	
	Water production	000	
	Production of wood and other biomass	000	
Kulturní	Increase in aesthetic value	00	
	Recreational functions	000	
	Socializing function	000	
	Educational function	000	
Biodiverzita	Habitat creation and biodiversity support	ୖଡ଼ଡ଼	
Ostathi	Value of surrounding properties	000	0

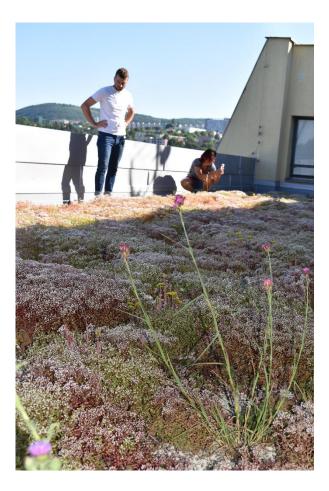
Results - societal costs and benefits

• comprehensive society-wide economic assessment

Time horizon (25 years)				
Total present value of COSTS	14,600 EUR			
Total present value of BENEFITS	18,040 EUR			
APPRECIATION of 1 invested EUR	1,2 EUR			
RETURN of investment	1 year			

Greening of the tram line (Ústí nad Labem)

- roof on the building of the Faculty, building from 1986
- green roof as a part of reconstruction
- 125 m² extensive green roof
- substrate thickness of 8-10 cm
- mainly sedum plants

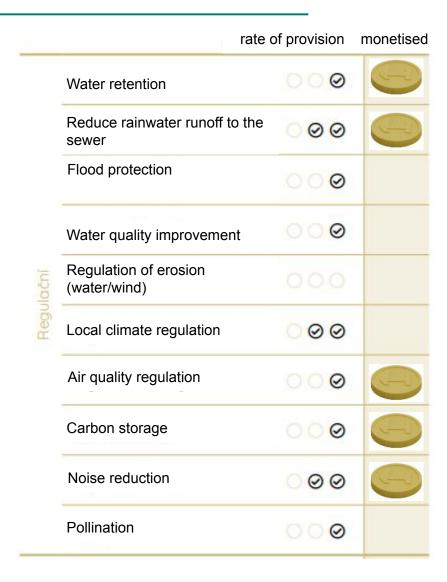

Services and benefits provided

	rate	e of provision	monetised
	Water retention	000	
	Reduce rainwater runoff to the sewer	00	
	Flood protection	000	
	Water quality improvement	000	
Regulační	Regulation of erosion (water/wind)	000	
Regu	Local climate regulation	000	
	Air quality regulation	000	9
	Carbon storage	000	
	Noise reduction	000	
	Pollination	000	
-			

D	Crop and food production	000	
dis obovo	Water production		
Kulturni Zde	Production of wood and other biomass	000	
	Increase in aesthetic value		
	Recreational functions		
	Socializing function	000	
	Educational function	00	
Bodiverzita	Habitat creation and biodiversity support	000	
	Value of surrounding properties	000	
Ostatn	Energy savings for heating/cooling	000	
20	Lifetime extension of insulation	000	9

Results - societal costs and benefits

• comprehensive society-wide economic assessment


Time horizon (25 years)				
Total present value of COSTS	7,680 EUR			
Total present value of BENEFITS	9,800 EUR			
APPRECIATION of 1 invested EUR	1,3 EUR			
RETURN of investment	14 years			

Greening of the tram line (Ostrava)

- Revitalisation of the rail belt
- Dry-loving vegetation cover (sedum plants)
- Motivation: a number of aspects noise and dust reduction, HDV and microclimate improvement
- 654 m long part

Services and benefits provided

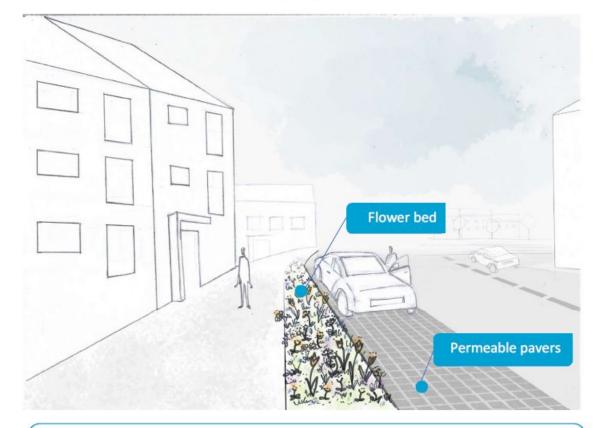
Zásobovací	Crop and food production		
	Water production	000	
	Production of wood and other biomass	000	
Kulturní	Increase in aesthetic value	000	
	Recreational functions	000	
	Socializing function	000	
	Educational function	000	
Ostatní Biodiverzita	Habitat creation and biodiversity support	000	
Ostathi	Value of surrounding properties	000	C

Results - societal costs and benefits

• comprehensive society-wide economic assessment

Time horizon (25 years)					
Total present value of COSTS	467,280 EUR				
Total present value of BENEFITS	678,360 EUR				
APPRECIATION of 1 invested EUR	1,5 EUR				
RETURN of investment	12 years				

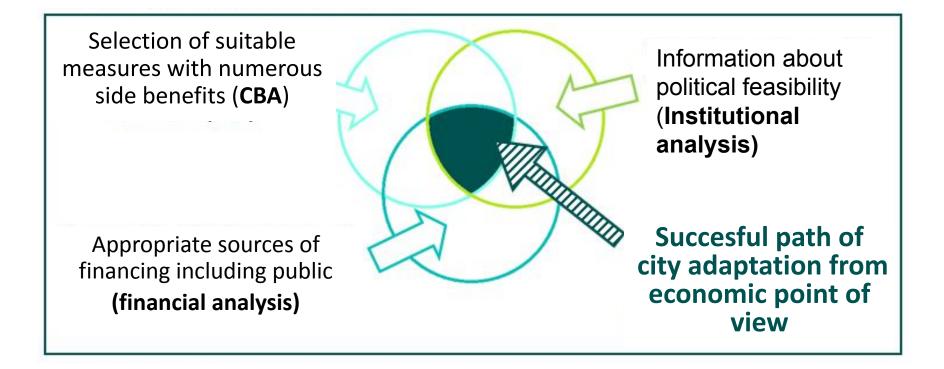
How to find out preferences?



Results

Litoměřice		Dank	Prague	
Score	NBS	Rank	NBS	Score
8.73	Trees	1	Trees	9.07
7.96	Retention ponds	2	Retention ponds	8.50
7.57	Flower beds	3	Flower beds	8.32
7.41	Green roofs	4	Green roofs	7.95
7.05	Biosolar roofs	5	Biosolar roofs	7.48
7.00	Bushes	6	Bushes	7.39
6.74	Lawn	7	Lawn	7.37
6.44	Constructed wetlands	8	Green tram tracks	7.36
6.39	Green façades	9	Constructed wetlands	6.60
6.10	Green tram tracks	10	Green façades	6.43
5.14	Swales	11	Swales	5.87
4.84	Polders	12	Polders	5.47

Increased price of rent


47 EUR/month

How to find out preferences?

Attribute	Mean	Median	Standard deviation	
			Prague	
Minimum Green roof	-145.2	-18.1	327.0	
🚁 Green façade	65.4	2.4	198.2	
🔿 Grassy strip	89.7	4.5	242.8	
🛸 Flower bed	-99.8	-7.2	247.5	
🏓 Grass paving	-24.4	-0.3	161.7	
Mermeable pavers	-76.7	-1.9	293.2	
			Litoměřice	
🟓 Green roof	-3.9	-3.2	2.6	
🗼 Green façade	2.7	1.8	3.9	
🔿 Grassy strip	3.4	2.3	3.8	
Flower bed	-3.4	-2.8	2.3	
Grass paving	-0.9	-0.6	3.9	
Permeable pavers	-2.7	-1.7	7.2	

Conclusion

COMMUNICATION IS THE KEY

Multiple ecosystem services - an opportunity to increase wellbeing

IT MAKES (ECONOMIC) SENSE TO SUPPORT GBI

Ecosystem services typically exceed the implementation and maintenance costs many times over the lifetime of the measures

ECONOMIC ARGUMENT IS A STRONG ONE

An economic assessment can be used to evaluate the benefits of measures in relation to the costs.

Economic assessment should be part of the projects

More tips and tricks

New book from the team Water in City

> available at www.IEEP.cz

OBCE MLUVÍ O VOD

ш

PRAVIDLA A POSTUPY PRO KOMUNIKACI

Obce mluví o vodě

ablan parlatur? nostrud MODRO. ZELENA MESTA us aliquip ex 10 ipsum dolai UJEP IEP Manager 0 ER **FURTHER EXAMPLES** available at www.IEEP.cz

Blue-green cities for a better life...

Ing. Jan Macháč, Ph.D. - machac@ieep.cz

www.ieep.cz

www.tacr.cz/en

www.e-academia.eu Thank you for your attention.

Sustainable Population Consumption in a Post-Pandemic Economy. | 9. October 2024 | Ústí nad Labem

This project is co-financed from the state budget by the Technology Agency of the Czech Republic within the ETA Programme.

IREAS

I€₽